Abstract
Cancer-associated fibroblasts (CAFs) are a heterogeneous population of cells. At one end of the spectrum are alpha-smooth muscle actin expressing myoCAFs (myofibroblast CAFs) and at the other end are the interferon (IFN) and Janus Kinase/Signal Transducer and Activator of Transcription responsive iCAFs (inflammatory CAFs). Both types of CAFs promote tumor growth. While myoCAFs foster immune exclusion and limit tumor spread, iCAFs create a highly immunosuppressive environment and foster the seeding of distant metastases. However, iCAFs also represent a tumor vulnerability. They are competent to undergo necroptosis, a highly immunogenic form of cell death that is triggered when Z-DNA or Z-RNA (collectively called ZNA) is sensed by the IFN-induced ZNA binding protein 1 (ZBP1). The sequestering of ZNA ligands by the p150 isoform of the double-stranded RNA-specific deaminase ADAR1 protects iCAFs from cell death. ZBP1-dependent necroptosis in iCAFs can be triggered by administering an orally available small molecule that generates sufficient amounts of ZNA to bypass ADAR1 inhibition. The therapeutic approach of targeting Z-prone sequences (called flipons) is agnostic to the mutations driving cancer progression. By exploiting the tumor vulnerability posed by expression of ZBP1-dependent immunogenic cell death pathways in iCAFs, flipon therapeutics offer new hope for improved clinical outcomes.
Original language | English |
---|---|
Article number | e005704 |
Journal | Journal for ImmunoTherapy of Cancer |
Volume | 10 |
Issue number | 11 |
DOIs | |
State | Published - Nov 29 2022 |
Keywords
- Alarmins
- Immunity, Innate
- Inflammation
- Programmed Cell Death 1 Receptor
- Tumor Microenvironment