TY - JOUR
T1 - Unique properties of the large antigen of hepatitis delta virus
AU - Moraleda, Gloria
AU - Seeholzer, Steven
AU - Bichko, Vadim
AU - Dunbrack, Roland
AU - Otto, James
AU - Taylor, John
PY - 1999
Y1 - 1999
N2 - The large form of the hepatitis delta virus (HDV) protein (L) can be isoprenylated near its C terminus, and this modification is considered essential for particle assembly. Using gel electrophoresis, we separated L into two species of similar mobilities. The slower species could be labeled by the incorporation of [14C]mevalono-lactone and is interpreted to be isoprenylated L (L(i)). In serum particles, infected liver, transfected cells, and assembled particles, 25 to 85% of L was isoprenylated. Isoprenylation was also demonstrated by 14C incorporation in vitro with a rabbit reticulocyte coupled transcription-translation system. However, the species obtained migrated even slower than that detected by labeling in vivo. Next, in studies of HDV particle assembly in the presence of the surface proteins of human hepatitis B virus, we observed the following. (i) Relative to L, L(i) was preferentially assembled into virus-like particles. (ii) L(i) could coassemble the unmodified L and the small delta protein, S. (iii) In contrast, a form of L with a deletion in the dimerization domain was both isoprenylated and assembled, but it could not support the coassembly of S. Finally, to test the expectation that the isoprenylation of L would increase its hydrophobicity, we applied a phase separation strategy based on micelle formation with the nonionic detergent Triton X-114. We showed the following. (i) The unique C-terminal 19 amino acids present on L relative to S caused a significant increase in the hydrophobicity. (ii) This increase was independent of isoprenylation. (iii) In contrast, other, artificial modifications at either the N or C terminus of S did not increase the hydrophobicity. (iv) The increased hydrophobicity was not sufficient for particle assembly; nevertheless, we speculate that it might facilitate virion assembly.
AB - The large form of the hepatitis delta virus (HDV) protein (L) can be isoprenylated near its C terminus, and this modification is considered essential for particle assembly. Using gel electrophoresis, we separated L into two species of similar mobilities. The slower species could be labeled by the incorporation of [14C]mevalono-lactone and is interpreted to be isoprenylated L (L(i)). In serum particles, infected liver, transfected cells, and assembled particles, 25 to 85% of L was isoprenylated. Isoprenylation was also demonstrated by 14C incorporation in vitro with a rabbit reticulocyte coupled transcription-translation system. However, the species obtained migrated even slower than that detected by labeling in vivo. Next, in studies of HDV particle assembly in the presence of the surface proteins of human hepatitis B virus, we observed the following. (i) Relative to L, L(i) was preferentially assembled into virus-like particles. (ii) L(i) could coassemble the unmodified L and the small delta protein, S. (iii) In contrast, a form of L with a deletion in the dimerization domain was both isoprenylated and assembled, but it could not support the coassembly of S. Finally, to test the expectation that the isoprenylation of L would increase its hydrophobicity, we applied a phase separation strategy based on micelle formation with the nonionic detergent Triton X-114. We showed the following. (i) The unique C-terminal 19 amino acids present on L relative to S caused a significant increase in the hydrophobicity. (ii) This increase was independent of isoprenylation. (iii) In contrast, other, artificial modifications at either the N or C terminus of S did not increase the hydrophobicity. (iv) The increased hydrophobicity was not sufficient for particle assembly; nevertheless, we speculate that it might facilitate virion assembly.
KW - Amino Acid Sequence
KW - Animals
KW - Electrophoresis, Polyacrylamide Gel
KW - Hepatitis Antigens/metabolism
KW - Hepatitis Delta Virus/metabolism
KW - Hepatitis delta Antigens
KW - Humans
KW - Molecular Sequence Data
KW - Rabbits
KW - Reticulocytes
KW - Sequence Homology, Amino Acid
KW - Tumor Cells, Cultured
UR - http://www.scopus.com/inward/record.url?scp=0032816401&partnerID=8YFLogxK
UR - https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=purepublist2023&SrcAuth=WosAPI&KeyUT=WOS:000081964700007&DestLinkType=FullRecord&DestApp=WOS
U2 - 10.1128/jvi.73.9.7147-7152.1999
DO - 10.1128/jvi.73.9.7147-7152.1999
M3 - Article
C2 - 10438801
SN - 0022-538X
VL - 73
SP - 7147
EP - 7152
JO - Journal of Virology
JF - Journal of Virology
IS - 9
ER -