The Saccharomyces cerevisiae SR protein Npl3 interacts with hyperphosphorylated CTD of RNA Polymerase II

Adity Gupta, Ashutosh Kumar, Neha Singh, Nikita Sudarshan, Vasily M. Studitsky, Kam Y.J. Zhang, Md Sohail Akhtar

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The catalytic subunit of RNA Polymerase II contains a highly conserved carboxy terminal domain (CTD) composed of multiple tandem heptad sequence Tyr1Ser2Pro3Thr4Ser5Pro6Ser7. The non-proline residues in CTD undergo posttranslational modifications, with Ser5 phosphorylation (Ser5P) predominating at the start of the transcription cycle and Ser2P at the end, while other phosphorylation levels are high all throughout. The differentially phosphorylated CTD is recognized by regulatory proteins, helpful during mRNA transcription and export. One such protein Npl3 is composed of two RNA binding domains and a C-terminus RGG/SR domain. The Ser411 of Npl3 is reported to make direct contact with Ser2P of CTD for its recruitment and function, while the Npl3 lacking of C-terminal 25 amino acids (Npl3Δ389414) showed no apparent defects in mRNA synthesis. Here, we report that the RNA binding domains of Npl3 are separate folding units and interact also with the CTD. The interaction between Npl3 and CTD appears to involve not just Ser2P, but also the Ser5P and Ser7P. The Arg126 of the first RNA binding domain interacts with Ser2P whereas the Arg235 of the second RNA binding domain interacts with either Ser7P or Ser5P of another heptad. The finding provides new insight of Npl3 function for mRNA transcription.

Original languageEnglish
Article number127541
JournalInternational Journal of Biological Macromolecules
Volume253
DOIs
StatePublished - Dec 31 2023

Keywords

  • CTD phosphorylation
  • Folding
  • MD simulation
  • Npl3

Fingerprint

Dive into the research topics of 'The Saccharomyces cerevisiae SR protein Npl3 interacts with hyperphosphorylated CTD of RNA Polymerase II'. Together they form a unique fingerprint.

Cite this