TY - JOUR
T1 - The human reduced folate carrier gene is ubiquitously and differentially expressed in normal human tissues
T2 - Identification of seven non-coding exons and characterization of a novel promoter
AU - Whetstine, Johnathan R.
AU - Flatley, Robin M.
AU - Matherly, Larry H.
PY - 2002/11/1
Y1 - 2002/11/1
N2 - Our previous study identified two alternate non-coding upstream exons (A and B) in the human reduced folate carrier (hRFC) gene, each controlled by a separate promoter. Each minimal promoter was regulated by unique cis-elements and transcription factors, including stimulating protein (Sp) 1 and Sp3 and the basic leucine zipper family of proteins, suggesting opportunities for cell- and tissue-specific regulation. Studies were performed to explore the expression patterns of hRFC in human tissues and cell lines. Levels of hRFC transcripts were measured on a multi-tissue mRNA array from 76 human tissues and tumour cell lines and on a multi-tissue Northern blot of representative tissues, each probed with full-length hRFC cDNA. hRFC transcripts were ubiquitously expressed, with the highest level in placenta and the lowest level in skeletal muscle. By rapid amplification of cDNA 5′-ends assay from nine tissues and two cell lines, hRFC transcripts containing both A and B 5′-untranslated regions (UTRs) were identified. However, five additional 5′-UTRs (designated A1, A2, C, D and E) were detected, mapping over 35 kb upstream from the hRFC translation start site. The 5′-UTRs were characterized by multiple transcription start sites and/or alternative splice forms. At least 18 unique hRFC transcripts were detected. A novel promoter was localized to a 453 bp fragment, including 442 upstream of exon C and 11 bp of exon C. A 346 bp repressor flanked the 3′-end of this promoter. Our results suggest an intricate regulation of hRFC gene expression involving multiple promoters and non-coding exons. Moreover, they provide a transcriptional framework for understanding the role of hRFC in the pathophysiology of folate deficiency and antifolate drug selectivity.
AB - Our previous study identified two alternate non-coding upstream exons (A and B) in the human reduced folate carrier (hRFC) gene, each controlled by a separate promoter. Each minimal promoter was regulated by unique cis-elements and transcription factors, including stimulating protein (Sp) 1 and Sp3 and the basic leucine zipper family of proteins, suggesting opportunities for cell- and tissue-specific regulation. Studies were performed to explore the expression patterns of hRFC in human tissues and cell lines. Levels of hRFC transcripts were measured on a multi-tissue mRNA array from 76 human tissues and tumour cell lines and on a multi-tissue Northern blot of representative tissues, each probed with full-length hRFC cDNA. hRFC transcripts were ubiquitously expressed, with the highest level in placenta and the lowest level in skeletal muscle. By rapid amplification of cDNA 5′-ends assay from nine tissues and two cell lines, hRFC transcripts containing both A and B 5′-untranslated regions (UTRs) were identified. However, five additional 5′-UTRs (designated A1, A2, C, D and E) were detected, mapping over 35 kb upstream from the hRFC translation start site. The 5′-UTRs were characterized by multiple transcription start sites and/or alternative splice forms. At least 18 unique hRFC transcripts were detected. A novel promoter was localized to a 453 bp fragment, including 442 upstream of exon C and 11 bp of exon C. A 346 bp repressor flanked the 3′-end of this promoter. Our results suggest an intricate regulation of hRFC gene expression involving multiple promoters and non-coding exons. Moreover, they provide a transcriptional framework for understanding the role of hRFC in the pathophysiology of folate deficiency and antifolate drug selectivity.
KW - Alternative splicing
KW - Methotrexate
KW - Tissue-specificity
KW - Transcription
UR - http://www.scopus.com/inward/record.url?scp=0036846897&partnerID=8YFLogxK
UR - https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=purepublist2023&SrcAuth=WosAPI&KeyUT=WOS:000179177900008&DestLinkType=FullRecord&DestApp=WOS
U2 - 10.1042/BJ20020512
DO - 10.1042/BJ20020512
M3 - Article
C2 - 12144527
SN - 0264-6021
VL - 367
SP - 629
EP - 640
JO - Biochemical Journal
JF - Biochemical Journal
IS - 3
ER -