Abstract
Specifying the primitive streak (PS) guides stem cell differentiation in vitro; however, much remains to be learned about the transcription networks that direct anterior and posterior PS cells (APS and PPS, respectively) to differentiate to distinct mesendodermal subpopulations. Here, we show that APS genes are predominantly induced in YAP1 −/− human embryonic stem cells (hESCs) in response to ACTIVIN. This finding establishes the Hippo effector YAP1 as a master regulator of PS specification, functioning to repress ACTIVIN-regulated APS genes in hESCs. Moreover, transient exposure of wild-type hESCs to dasatinib, a potent C-SRC/YAP1 inhibitor, enables differentiation to APS-derived endoderm and cardiac mesoderm in response to ACTIVIN. Importantly, these cells can differentiate efficiently to normal beating cardiomyocytes without the cytoskeletal defect seen in YAP1 −/− hESC-derived cardiomyocytes. Overall, we uncovered an induction mechanism to generate APS cells using a cocktail of ACTIVIN and YAP1i molecules that holds practical implications for hESC and induced pluripotent stem cell differentiation into distinct mesendodermal lineages.
Original language | English |
---|---|
Pages (from-to) | 1357-1364 |
Number of pages | 8 |
Journal | Stem Cell Reports |
Volume | 11 |
Issue number | 6 |
DOIs | |
State | Published - Dec 11 2018 |
Externally published | Yes |
Keywords
- ACTIVIN
- YAP
- cardiomyocyte differentiation
- human embryonic stem cells
- iPSC
- primitive streak