TY - JOUR
T1 - Production of the neuromodulator H2S by cystathionine β-synthase via the condensation of cysteine and homocysteine
AU - Chen, Xulin
AU - Jhee, Kwang Hwan
AU - Kruger, Warren D.
PY - 2004/12/10
Y1 - 2004/12/10
N2 - Hydrogen sulfide (H2S) has been observed in relatively high concentrations in the mammalian brain and has been shown to act as a neuromodulator. However, there is confusion in the literature regarding the actual source of H2S production. Reactions catalyzed by the cystathionine β-synthase enzyme (CBS) are one possible source for the production of H2S. Here we show that the CBS enzyme can efficiently produce H2S via a β-replacement reaction in which cysteine is condensed with homocysteine to form cystathionine and H2S. The production of H2S by this reaction is at least 50 times more efficient than that produced by hydrolysis of cysteine alone via β-elimination. Kinetic studies demonstrate that the Km and Kcat for cysteine is 3-fold higher and 2-fold lower, respectively, than that for serine. Consistent with these data, in vitro reconstitution studies show that at physiologically relevant concentrations of serine, homocysteine, and cysteine, about 5% of the cystathionine formed is from cysteine. We also show that AdoMet stimulates this H2S producing reaction but that there is no evidence for stimulation by calcium and calmodulin as reported previously. In summary, these results confirm the ability of CBS to produce H2S, but show in contrast to prior reports that the major mechanism is via β-replacement and not cysteine hydrolysis. In addition, these studies provide a biochemical explanation for the previously inexplicable homocysteine-lowering effects of N-acetylcysteine treatments in humans.
AB - Hydrogen sulfide (H2S) has been observed in relatively high concentrations in the mammalian brain and has been shown to act as a neuromodulator. However, there is confusion in the literature regarding the actual source of H2S production. Reactions catalyzed by the cystathionine β-synthase enzyme (CBS) are one possible source for the production of H2S. Here we show that the CBS enzyme can efficiently produce H2S via a β-replacement reaction in which cysteine is condensed with homocysteine to form cystathionine and H2S. The production of H2S by this reaction is at least 50 times more efficient than that produced by hydrolysis of cysteine alone via β-elimination. Kinetic studies demonstrate that the Km and Kcat for cysteine is 3-fold higher and 2-fold lower, respectively, than that for serine. Consistent with these data, in vitro reconstitution studies show that at physiologically relevant concentrations of serine, homocysteine, and cysteine, about 5% of the cystathionine formed is from cysteine. We also show that AdoMet stimulates this H2S producing reaction but that there is no evidence for stimulation by calcium and calmodulin as reported previously. In summary, these results confirm the ability of CBS to produce H2S, but show in contrast to prior reports that the major mechanism is via β-replacement and not cysteine hydrolysis. In addition, these studies provide a biochemical explanation for the previously inexplicable homocysteine-lowering effects of N-acetylcysteine treatments in humans.
UR - http://www.scopus.com/inward/record.url?scp=10644254287&partnerID=8YFLogxK
UR - https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=purepublist2023&SrcAuth=WosAPI&KeyUT=WOS:000225493400046&DestLinkType=FullRecord&DestApp=WOS
U2 - 10.1074/jbc.C400481200
DO - 10.1074/jbc.C400481200
M3 - Article
C2 - 15520012
SN - 0021-9258
VL - 279
SP - 52082
EP - 52086
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 50
ER -