TY - JOUR
T1 - Procaspase-1 patrolled to the nucleus of proatherogenic lipid LPC-activated human aortic endothelial cells induces ROS promoter CYP1B1 and strong inflammation
AU - Lu, Yifan
AU - Nanayakkara, Gayani
AU - Sun, Yu
AU - Liu, Lu
AU - Xu, Keman
AU - Drummer, Charles
AU - Shao, Ying
AU - Saaoud, Fatma
AU - Choi, Eric T.
AU - Jiang, Xiaohua
AU - Wang, Hong
AU - Yang, Xiaofeng
N1 - Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.
PY - 2021/11
Y1 - 2021/11
N2 - To determine the roles of nuclear localization of pro-caspase-1 in human aortic endothelial cells (HAECs) activated by proatherogenic lipid lysophosphatidylcholine (LPC), we examined cytosolic and nuclear localization of pro-caspase-1, identified nuclear export signal (NES) in pro-caspase-1 and sequenced RNAs. We made the following findings: 1) LPC increases nuclear localization of procaspase-1 in HAECs. 2) Nuclear pro-caspase-1 exports back to the cytosol, which is facilitated by a leptomycin B-inhibited mechanism. 3) Increased nuclear localization of pro-caspase-1 by a new NES peptide inhibitor upregulates inflammatory genes in oxidative stress and Th17 pathways; and SUMO activator N106 enhances nuclear localization of pro-caspase-1 and caspase-1 activation (p20) in the nucleus. 4) LPC plus caspase-1 enzymatic inhibitor upregulates inflammatory genes with hypercytokinemia/hyperchemokinemia and interferon pathways, suggesting a novel capsase-1 enzyme-independent inflammatory mechanism. 5) LPC in combination with NES inhibitor and caspase-1 inhibitor upregulate inflammatory gene expression that regulate Th17 activation, endotheli-1 signaling, p38-, and ERK- MAPK pathways. To examine two hallmarks of endothelial activation such as secretomes and membrane protein signaling, LPC plus NES inhibitor upregulate 57 canonical secretomic genes and 76 exosome secretomic genes, respectively, promoting four pathways including Th17, IL-17 promoted cytokines, interferon signaling and cholesterol biosynthesis. LPC with NES inhibitor also promote inflammation via upregulating ROS promoter CYP1B1 and 11 clusters of differentiation (CD) membrane protein pathways. Mechanistically, all the LPC plus NES inhibitor-induced genes are significantly downregulated in CYP1B1-deficient microarray, suggesting that nuclear caspase-1-induced CYP1B1 promotes strong inflammation. These transcriptomic results provide novel insights on the roles of nuclear caspase-1 in sensing DAMPs, inducing ROS promoter CYP1B1 and in regulating a large number of genes that mediate HAEC activation and inflammation. These findings will lead to future development of novel therapeutics for cardiovascular diseases (CVD), inflammations, infections, transplantation, autoimmune disease and cancers. (total words: 284).
AB - To determine the roles of nuclear localization of pro-caspase-1 in human aortic endothelial cells (HAECs) activated by proatherogenic lipid lysophosphatidylcholine (LPC), we examined cytosolic and nuclear localization of pro-caspase-1, identified nuclear export signal (NES) in pro-caspase-1 and sequenced RNAs. We made the following findings: 1) LPC increases nuclear localization of procaspase-1 in HAECs. 2) Nuclear pro-caspase-1 exports back to the cytosol, which is facilitated by a leptomycin B-inhibited mechanism. 3) Increased nuclear localization of pro-caspase-1 by a new NES peptide inhibitor upregulates inflammatory genes in oxidative stress and Th17 pathways; and SUMO activator N106 enhances nuclear localization of pro-caspase-1 and caspase-1 activation (p20) in the nucleus. 4) LPC plus caspase-1 enzymatic inhibitor upregulates inflammatory genes with hypercytokinemia/hyperchemokinemia and interferon pathways, suggesting a novel capsase-1 enzyme-independent inflammatory mechanism. 5) LPC in combination with NES inhibitor and caspase-1 inhibitor upregulate inflammatory gene expression that regulate Th17 activation, endotheli-1 signaling, p38-, and ERK- MAPK pathways. To examine two hallmarks of endothelial activation such as secretomes and membrane protein signaling, LPC plus NES inhibitor upregulate 57 canonical secretomic genes and 76 exosome secretomic genes, respectively, promoting four pathways including Th17, IL-17 promoted cytokines, interferon signaling and cholesterol biosynthesis. LPC with NES inhibitor also promote inflammation via upregulating ROS promoter CYP1B1 and 11 clusters of differentiation (CD) membrane protein pathways. Mechanistically, all the LPC plus NES inhibitor-induced genes are significantly downregulated in CYP1B1-deficient microarray, suggesting that nuclear caspase-1-induced CYP1B1 promotes strong inflammation. These transcriptomic results provide novel insights on the roles of nuclear caspase-1 in sensing DAMPs, inducing ROS promoter CYP1B1 and in regulating a large number of genes that mediate HAEC activation and inflammation. These findings will lead to future development of novel therapeutics for cardiovascular diseases (CVD), inflammations, infections, transplantation, autoimmune disease and cancers. (total words: 284).
KW - Aortic endothelial cell
KW - Caspase-1
KW - Inflammation
KW - Nuclear localization
KW - Secretomes
KW - Endothelial Cells
KW - Lysophosphatidylcholines
KW - Reactive Oxygen Species
KW - Humans
KW - Caspase 1/genetics
KW - Cytochrome P-450 CYP1B1
KW - Inflammation/genetics
KW - Aorta
UR - http://www.scopus.com/inward/record.url?scp=85116073441&partnerID=8YFLogxK
U2 - 10.1016/j.redox.2021.102142
DO - 10.1016/j.redox.2021.102142
M3 - Article
C2 - 34598017
AN - SCOPUS:85116073441
SN - 2213-2317
VL - 47
SP - 102142
JO - Redox Biology
JF - Redox Biology
M1 - 102142
ER -