Poly(ADP)-ribosylation inhibition: A promising approach for clear cell renal cell carcinoma therapy

Yaroslava Karpova, Danping Guo, Peter Makhov, Adam M. Haines, Dmitriy A. Markov, Vladimir Kolenko, Alexei V. Tulin

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Poly(ADP-ribose) polymerase 1 (PARP-1) and glycohydrolase (PARG) enzymes regulate chromatin structure, transcription activation, and DNA repair by modulating poly(ADP-ribose) (pADPr) level. Interest in PARP-1 inhibitors has soared recently with the recognition of their an-titumor efficacy. We have shown that the development of clear cell renal cell carcinoma (ccRCC) is associated with extreme accumulation of pADPr caused by the enhanced expression of PARP-1 and decreased PARG levels. The most severe misregulation of pADPr turnover is found in ccRCC specimens from metastatic lesions. Both, classical NAD-like and non-NAD-like PARP-1 inhibitors reduced viability and clonogenic potential of ccRCC cell lines and suppressed growth of ccRCC xenograft tumors. However, classical NAD-like PARP-1 inhibitors affected viability of normal kidney epithelial cells at high concentrations, while novel non-NAD-like PARP-1 inhibitors exhibited activity against malignant cells only. We have also utilized different approaches to reduce the pADPr level in ccRCC cells by stably overexpressing PARG and demonstrated the prominent antitumor effect of this “back-to-normal” intervention. We also generated ccRCC cell lines with stable overexpression of PARG under doxycycline induction. This genetic approach demonstrated significantly affected malignancy of ccRCC cells. Transcriptome analysis linked observed phenotype with changes in gene expression levels for lipid metabolism, interferon signaling, and angiogenesis pathways along with the changes in expression of key cancer-related genes.

Original languageEnglish
Article number4973
JournalCancers
Volume13
Issue number19
DOIs
StatePublished - Sep 3 2021

Keywords

  • Cancer cell
  • PARG
  • PARP-1 inhibitors
  • PARylation
  • Poly(ADP-ribose)
  • RCC

Fingerprint

Dive into the research topics of 'Poly(ADP)-ribosylation inhibition: A promising approach for clear cell renal cell carcinoma therapy'. Together they form a unique fingerprint.

Cite this