TY - JOUR
T1 - Overexpression of glucosylceramide synthase and P-glycoprotein in cancer cells selected for resistance to natural product chemotherapy
AU - Gouazé, Valerie
AU - Yu, Jing Y.
AU - Bleicher, Richard J.
AU - Han, Tie Yan
AU - Liu, Yong Yu
AU - Wang, Hongtao
AU - Gottesman, Michael M.
AU - Bitterman, Arie
AU - Giuliano, Armando E.
AU - Cabot, Myles C.
PY - 2004/5
Y1 - 2004/5
N2 - Resistance to natural product chemotherapy drugs is a major obstacle to successful cancer treatment. This type of resistance is often acquired in response to drug exposure; however, the mechanisms of this adverse reaction are complex and elusive. Here, we have studied acquired resistance to Adriamycin, Vinca alkaloids, and etoposide in MCF-7 breast cancer cells, KB-3-1 epidermoid carcinoma cells, and other cancer cell lines to determine if there is an association between expression of glucosylceramide synthase, the enzyme catalyzing ceramide glycosylation to glucosylceramide, and the multidrug-resistant (MDR) phenotype. This work shows that glucosylceramide levels increase concomitantly with increased drug resistance in the KB-3-1 vinblastine-resistant sublines KB-V.01, KB-V.1, and KB-V1 (listed in order of increasing MDR). The levels of glucosylceramide synthase mRNA, glucosylceramide synthase protein, and P-glycoprotein (P-gp) also increased in parallel. Increased glucosylceramide levels were also present in Adriamycin-resistant KB-3-1 sublines KB-A.05 and KB-A1. In breast cancer, detailed analysis of MCF-7 wild-type and MCF-7-AdrR cells (Adriamycin-resistant) demonstrated enhanced glucosylceramide synthase message and protein, P-gp message and protein, and high levels of glucosylceramide in resistant cells. Similar results were seen in vincristine-resistant leukemia, etoposide-resistant melanoma, and Adriamycin-resistant colon cancer cell lines. Cell-free glucosylceramide synthase activity was higher in lysates obtained from drug-resistant cells. Lastly, glucosylceramide synthase promoter activity was 15-fold higher in MCF-7-AdrR compared with MCF-7 cells. We conclude that selection pressure for resistance to natural product chemotherapy drugs selects for enhanced ceramide metabolism through glucosylceramide synthase in addition to enhanced P-gp expression. A possible connection between glucosylceramide synthase and P-gp in drug resistance biology is suggested.
AB - Resistance to natural product chemotherapy drugs is a major obstacle to successful cancer treatment. This type of resistance is often acquired in response to drug exposure; however, the mechanisms of this adverse reaction are complex and elusive. Here, we have studied acquired resistance to Adriamycin, Vinca alkaloids, and etoposide in MCF-7 breast cancer cells, KB-3-1 epidermoid carcinoma cells, and other cancer cell lines to determine if there is an association between expression of glucosylceramide synthase, the enzyme catalyzing ceramide glycosylation to glucosylceramide, and the multidrug-resistant (MDR) phenotype. This work shows that glucosylceramide levels increase concomitantly with increased drug resistance in the KB-3-1 vinblastine-resistant sublines KB-V.01, KB-V.1, and KB-V1 (listed in order of increasing MDR). The levels of glucosylceramide synthase mRNA, glucosylceramide synthase protein, and P-glycoprotein (P-gp) also increased in parallel. Increased glucosylceramide levels were also present in Adriamycin-resistant KB-3-1 sublines KB-A.05 and KB-A1. In breast cancer, detailed analysis of MCF-7 wild-type and MCF-7-AdrR cells (Adriamycin-resistant) demonstrated enhanced glucosylceramide synthase message and protein, P-gp message and protein, and high levels of glucosylceramide in resistant cells. Similar results were seen in vincristine-resistant leukemia, etoposide-resistant melanoma, and Adriamycin-resistant colon cancer cell lines. Cell-free glucosylceramide synthase activity was higher in lysates obtained from drug-resistant cells. Lastly, glucosylceramide synthase promoter activity was 15-fold higher in MCF-7-AdrR compared with MCF-7 cells. We conclude that selection pressure for resistance to natural product chemotherapy drugs selects for enhanced ceramide metabolism through glucosylceramide synthase in addition to enhanced P-gp expression. A possible connection between glucosylceramide synthase and P-gp in drug resistance biology is suggested.
KW - ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
KW - Biological Factors/pharmacology
KW - Cell Line, Tumor
KW - Doxorubicin/pharmacology
KW - Drug Resistance, Neoplasm/physiology
KW - Etoposide/pharmacology
KW - Glucosylceramides/metabolism
KW - Glucosyltransferases/genetics
KW - Humans
KW - RNA, Messenger/genetics
KW - Vinblastine/pharmacology
UR - http://www.scopus.com/inward/record.url?scp=4444364174&partnerID=8YFLogxK
M3 - Article
C2 - 15141021
AN - SCOPUS:4444364174
SN - 1535-7163
VL - 3
SP - 633
EP - 639
JO - Molecular Cancer Therapeutics
JF - Molecular Cancer Therapeutics
IS - 5
ER -