TY - JOUR
T1 - Myocardial GRK2 Reduces Fatty Acid Metabolism and β-Adrenergic Receptor-Mediated Mitochondrial Responses
AU - Zhai, Ruxu
AU - Varner, Erika L
AU - Rao, Ajay
AU - Karhadkar, Sunil
AU - Di Carlo, Antonio
AU - Snyder, Nathaniel W
AU - Sato, Priscila Y
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/3/1
Y1 - 2022/3/1
N2 - G-protein coupled receptor (GPCR) kinase 2 (GRK2) is upregulated in heart failure (HF) patients and mouse models of cardiac disease. GRK2 is a regulator of β-adrenergic receptors (βARs), a GPCR involved in ionotropic and chronotropic responses. We and others have recently reported GRK2 to be localized in the mitochondria, although its function in the mitochondria and/or metabolism remain not clearly defined. We hypothesized that upregulation of GRK2 reduced mitochondrial respiratory function and responses to βAR activation. Utilizing isolated mouse primary adult cardiomyocytes (ACMs), we investigated the role of glucose, palmitate, ketone bodies, and BCAAs in mediating cell survival. Our results showed that myocyte upregulation of GRK2 promotes palmitate-induced cell death. Isotopologue labeling and mass spectrometry showed that the upregulation of GRK2 reduces β-hydroxybutyryl CoA generation. Next, using isoproterenol (ISO), a non-selective βAR-agonist, we determined mitochondrial function in mouse and human primary ACMs. Upregulation of GRK2 impaired ISO-mediated mitochondrial functional responses, which we propose is important for metabolic adaptations in pathological conditions. Increased cardiac levels of GRK2 reduced fatty acid-specific catabolic pathways and impaired ISO-stimulated mitochondrial function. Our data support the notion that GRK2 participates in bioenergetic remodeling and may be an important avenue for the development of novel pharmacological strategies in HF.
AB - G-protein coupled receptor (GPCR) kinase 2 (GRK2) is upregulated in heart failure (HF) patients and mouse models of cardiac disease. GRK2 is a regulator of β-adrenergic receptors (βARs), a GPCR involved in ionotropic and chronotropic responses. We and others have recently reported GRK2 to be localized in the mitochondria, although its function in the mitochondria and/or metabolism remain not clearly defined. We hypothesized that upregulation of GRK2 reduced mitochondrial respiratory function and responses to βAR activation. Utilizing isolated mouse primary adult cardiomyocytes (ACMs), we investigated the role of glucose, palmitate, ketone bodies, and BCAAs in mediating cell survival. Our results showed that myocyte upregulation of GRK2 promotes palmitate-induced cell death. Isotopologue labeling and mass spectrometry showed that the upregulation of GRK2 reduces β-hydroxybutyryl CoA generation. Next, using isoproterenol (ISO), a non-selective βAR-agonist, we determined mitochondrial function in mouse and human primary ACMs. Upregulation of GRK2 impaired ISO-mediated mitochondrial functional responses, which we propose is important for metabolic adaptations in pathological conditions. Increased cardiac levels of GRK2 reduced fatty acid-specific catabolic pathways and impaired ISO-stimulated mitochondrial function. Our data support the notion that GRK2 participates in bioenergetic remodeling and may be an important avenue for the development of novel pharmacological strategies in HF.
KW - Animals
KW - Fatty Acids/metabolism
KW - G-Protein-Coupled Receptor Kinase 2/metabolism
KW - Heart Failure/metabolism
KW - Humans
KW - Isoproterenol/pharmacology
KW - Mice
KW - Mitochondria/metabolism
KW - Myocytes, Cardiac/metabolism
KW - Palmitates/metabolism
KW - Receptors, Adrenergic, beta/metabolism
KW - Cardiomyocytes
KW - Metabolism
KW - Beta-adrenergic receptors
KW - Mitochondria
KW - GRK2
UR - http://www.scopus.com/inward/record.url?scp=85125557834&partnerID=8YFLogxK
U2 - 10.3390/ijms23052777
DO - 10.3390/ijms23052777
M3 - Article
C2 - 35269919
SN - 1661-6596
VL - 23
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 5
M1 - 2777
ER -