Molecular mechanisms for the subversion of MyD88 signaling by TcpC from virulent uropathogenic Escherichia coli

Greg A. Snyder, Christine Cirl, Jiansheng Jiang, Kang Chen, Anna Waldhuber, Patrick Smith, Franziska Römmler, Nathaniel Snyder, Theresa Fresquez, Susanne Dürr, Nico Tjandra, Thomas Miethke, Tsan Sam Xiao

Research output: Contribution to journalArticlepeer-review

74 Scopus citations

Abstract

The Toll/IL-1 receptor (TIR) domains are crucial signaling modules during innate immune responses involving the Toll-like receptors (TLRs) and IL-1 receptor (IL-1R). Myeloid differential factor 88 (MyD88) is a central TIR domain-containing adapter molecule responsible for nearly all TLR-mediated signaling and is targeted by a TIR domain-containing protein C (TcpC) from virulent uropatho-genic Escherichia coli, a common human pathogen. The mechanism of such molecular antagonism has remained elusive. We present the crystal structure of the MyD88 TIR domain with distinct loop conformations that underscore the functional specialization of the adapter, receptor, and microbial TIR domains. Our structural analyses shed light on the genetic mutations at these loops as well as the Poc site. We demonstrate that TcpC directly associates with MyD88and TLR4through its predictedDDandBBloopstoimpairthe TLR-induced cytokine induction. Furthermore, NMR titration experiments identify the unique CD, DE, and EE loops from MyD88 at the TcpC-interacting surface, suggesting that TcpC specifically engages these MyD88 structural elements for immune suppression. These findings thus provide a molecular basis for the subversion of TLR signaling by the uropathogenic E. coli virulence factor TcpC and furnish a framework for the design of novel therapeutic agents that modulate immune activation.

Original languageEnglish
Pages (from-to)6985-6990
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume110
Issue number17
DOIs
StatePublished - Apr 23 2013
Externally publishedYes

Keywords

  • Bacterial pathogens
  • Innate immune cells

Fingerprint

Dive into the research topics of 'Molecular mechanisms for the subversion of MyD88 signaling by TcpC from virulent uropathogenic Escherichia coli'. Together they form a unique fingerprint.

Cite this