TY - JOUR
T1 - Enzyme and acid catalyzed degradation of PEG45-b-PBO 0,6,9-b-PCL60 micelles
T2 - Increased hydrolytic stability by engineering the hydrophilic-hydrophobic interface
AU - Zhu, Xiaobo
AU - Sharma, Vishnu D.
AU - Fryd, Michael
AU - Ilies, Marc A.
AU - Wayland, Bradford B.
PY - 2013/5/24
Y1 - 2013/5/24
N2 - Acid and Pseudomonas (P.) cepacia lipase catalyzed ester hydrolysis were evaluated for block copolymer micelles generated from low polydispersity PEG45-b-PBOn-b-PCL60 (n = 0, 6, 9). Moving the hydrophilic-hydrophobic junction away from the PCL micelle core-water interface by inserting a short hydrophobic non-hydrolyzable PBO segment between the PEG and PCL blocks was studied as a strategy for tuning the micelle hydrolytic stability. 1H NMR was applied in evaluating the micelle and solution compositions and to determine kinetic parameters. Acid and lipase catalyzed micelle hydrolysis proceed by distinctly different routes. Micelles from the triblock copolymers PEG45-b-PBOn-b-PCL60 (n = 6, 9) are observed to react substantially slower and persist intact longer in the presence of both strong acids and lipase enzymes than micelles of the parent diblock copolymer (PEG45-b-PCL60).
AB - Acid and Pseudomonas (P.) cepacia lipase catalyzed ester hydrolysis were evaluated for block copolymer micelles generated from low polydispersity PEG45-b-PBOn-b-PCL60 (n = 0, 6, 9). Moving the hydrophilic-hydrophobic junction away from the PCL micelle core-water interface by inserting a short hydrophobic non-hydrolyzable PBO segment between the PEG and PCL blocks was studied as a strategy for tuning the micelle hydrolytic stability. 1H NMR was applied in evaluating the micelle and solution compositions and to determine kinetic parameters. Acid and lipase catalyzed micelle hydrolysis proceed by distinctly different routes. Micelles from the triblock copolymers PEG45-b-PBOn-b-PCL60 (n = 6, 9) are observed to react substantially slower and persist intact longer in the presence of both strong acids and lipase enzymes than micelles of the parent diblock copolymer (PEG45-b-PCL60).
KW - Acid hydrolysis
KW - Block copolymer micelle
KW - Hydrolytic degradation
KW - Hydrophilic-hydrophobic interface
KW - Lipase enzyme
UR - http://www.scopus.com/inward/record.url?scp=84877718862&partnerID=8YFLogxK
U2 - 10.1016/j.polymer.2013.03.055
DO - 10.1016/j.polymer.2013.03.055
M3 - Article
AN - SCOPUS:84877718862
SN - 0032-3861
VL - 54
SP - 2879
EP - 2886
JO - Polymer
JF - Polymer
IS - 12
ER -