Diffuse reflectance spectra measured in vivo in human tissues during photofrin-mediated pleural photodynamic therapy

Jarod C. Finlay, Timothy C. Zhu, Andreea Dimofte, Joseph S. Friedberg, Stephen M. Hahn

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

18 Scopus citations

Abstract

Optimal delivery of light in photodynamic therapy (PDT) requires not only optimal placement and power of light sources, but knowledge of the dynamics of light propagation in the tissue being treated and in the surrounding normal tissue, and of their respective accumulations of sensitizer. In an effort to quantify both tissue optical properties and sensitizer distribution, we have measured fluorescence emission and diffuse reflectance spectra at the surface of a variety of tissue types in the thoracic cavities of human patients. The patients studied here were enrolled in Phase II clinical trials of Photofrin-mediated PDT for the treatment of non-small cell lung cancer and cancers with pleural effusion. Patients were given Photofrin at dose of 2 mg per kg body weight 24 hours prior to treatment. Each patient received surgical resection of the affected lung and pleura. Patients received intracavity PDT at 630nm to a dose of 30 J/cm 2, as determined by isotropic detectors sutured to the cavity walls. We measured the diffuse reflectance spectra before and after PDT in various positions within the cavity, including tumor, diaphragm, pericardium, skin, and chest wall muscle in 5 patients. The measurements we acquired using a specially designed fiber optic-based probe consisting of one fluorescence excitation fiber, one white light delivery fiber, and 9 detection fibers spaced at distances from 0.36 to 7.8 mm from the source, all of which are imaged via a spectrograph onto a CCD, allowing measurement of radially-resolved diffuse reflectance and fluorescence spectra. The light sources for these two measurements (a 403-nm diode laser and a halogen lamp, respectively) were blocked by computer-controlled shutters, allowing sequential fluorescence, reflectance, and background acquisition. The diffuse reflectance was analyzed to determine the absorption and scattering spectra of the tissue and from these, the concentration and oxygenation of hemoglobin and the local drug uptake. The total hemoglobin concentration in normal tissues varied from 50 to 300 μM, and the oxygen saturation was generally above 60%. One tumor measured exhibited higher hemoglobin concentration and lower saturation.

Original languageEnglish
Title of host publicationOptical Methods for Tumor Treatment and Detection
Subtitle of host publicationMechanisms and Techniques in Photodynamic Therapy XV
Volume6139
DOIs
StatePublished - 2006
EventOptical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XV - San Jose, CA, United States
Duration: Jan 21 2006Jan 22 2006

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume6139
ISSN (Print)1605-7422

Conference

ConferenceOptical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XV
Country/TerritoryUnited States
CitySan Jose, CA
Period01/21/0601/22/06

Keywords

  • Diffuse reflectance
  • Fluorescence spectroscopy
  • Photodynamic therapy
  • Photofrin

Fingerprint

Dive into the research topics of 'Diffuse reflectance spectra measured in vivo in human tissues during photofrin-mediated pleural photodynamic therapy'. Together they form a unique fingerprint.

Cite this