TY - JOUR
T1 - Detection of impaired homologous recombination repair in NSCLC cells and tissues
AU - Birkelbach, Moritz
AU - Ferraiolo, Natalie
AU - Gheorghiu, Liliana
AU - Pfäffle, Heike N.
AU - Daly, Benedict
AU - Ebright, Michael I.
AU - Spencer, Cheryl
AU - O'Hara, Carl
AU - Whetstine, Johnathan R.
AU - Benes, Cyril H.
AU - Sequist, Lecia V.
AU - Zou, Lee
AU - Dahm-Daphi, Jochen
AU - Kachnic, Lisa A.
AU - Willers, Henning
PY - 2013/3
Y1 - 2013/3
N2 - INTRODUCTION: Homologous recombination repair (HRR) is a critical pathway for the repair of DNA damage caused by cisplatin or poly-ADP ribose polymerase (PARP) inhibitors. HRR may be impaired by multiple mechanisms in cancer, which complicates assessing the functional HRR status in cells. Here, we monitored the ability of non-small-cell lung cancer (NSCLC) cells to form subnuclear foci of DNA repair proteins as a surrogate of HRR proficiency. METHODS: We assessed clonogenic survival of 16 NSCLC cell lines in response to cisplatin, mitomycin C (MMC), and the PARP inhibitor olaparib. Thirteen tumor explants from patients with NSCLC were subjected to cisplatin ex vivo. Cells were assayed for foci of repair-associated proteins such as BRCA1, FANCD2, RAD51, and γ-H2AX. RESULTS: Four cell lines (25%) showed an impaired RAD51 foci-forming ability in response to cisplatin. Impaired foci formation correlated with cellular sensitivity to cisplatin, MMC and olaparib. Foci responses complemented or superseded genomic information suggesting alterations in the ATM/ATR and FA/BRCA pathways. Because baseline foci in untreated cells did not predict drug sensitivity, we adapted an ex vivo biomarker assay to monitor damage-induced RAD51 foci in NSCLC explants from patients. Ex vivo cisplatin treatment of explants identified two tumors (15%) exhibiting compromised RAD51 foci induction. CONCLUSIONS: A fraction of NSCLC harbors HRR defects that may sensitize the affected tumors to DNA-damaging agents including PARP inhibitors. We propose that foci-based functional biomarker assays represent a powerful tool for prospective determination of treatment sensitivity, but will require ex vivo techniques for induction of DNA damage to unmask the underlying HRR defect.
AB - INTRODUCTION: Homologous recombination repair (HRR) is a critical pathway for the repair of DNA damage caused by cisplatin or poly-ADP ribose polymerase (PARP) inhibitors. HRR may be impaired by multiple mechanisms in cancer, which complicates assessing the functional HRR status in cells. Here, we monitored the ability of non-small-cell lung cancer (NSCLC) cells to form subnuclear foci of DNA repair proteins as a surrogate of HRR proficiency. METHODS: We assessed clonogenic survival of 16 NSCLC cell lines in response to cisplatin, mitomycin C (MMC), and the PARP inhibitor olaparib. Thirteen tumor explants from patients with NSCLC were subjected to cisplatin ex vivo. Cells were assayed for foci of repair-associated proteins such as BRCA1, FANCD2, RAD51, and γ-H2AX. RESULTS: Four cell lines (25%) showed an impaired RAD51 foci-forming ability in response to cisplatin. Impaired foci formation correlated with cellular sensitivity to cisplatin, MMC and olaparib. Foci responses complemented or superseded genomic information suggesting alterations in the ATM/ATR and FA/BRCA pathways. Because baseline foci in untreated cells did not predict drug sensitivity, we adapted an ex vivo biomarker assay to monitor damage-induced RAD51 foci in NSCLC explants from patients. Ex vivo cisplatin treatment of explants identified two tumors (15%) exhibiting compromised RAD51 foci induction. CONCLUSIONS: A fraction of NSCLC harbors HRR defects that may sensitize the affected tumors to DNA-damaging agents including PARP inhibitors. We propose that foci-based functional biomarker assays represent a powerful tool for prospective determination of treatment sensitivity, but will require ex vivo techniques for induction of DNA damage to unmask the underlying HRR defect.
KW - Biomarker
KW - Homologous recombination
KW - Lung cancer
KW - RAD51
UR - http://www.scopus.com/inward/record.url?scp=84874109205&partnerID=8YFLogxK
UR - https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=purepublist2023&SrcAuth=WosAPI&KeyUT=WOS:000316205600011&DestLinkType=FullRecord&DestApp=WOS
U2 - 10.1097/JTO.0b013e31827ecf83
DO - 10.1097/JTO.0b013e31827ecf83
M3 - Article
C2 - 23399959
SN - 1556-0864
VL - 8
SP - 279
EP - 286
JO - Journal of Thoracic Oncology
JF - Journal of Thoracic Oncology
IS - 3
ER -