Control of the DNA damage checkpoint by Chk1 and Rad53 protein kinases through distinct mechanisms

Yolanda Sanchez, Jeff Bachant, Hong Wang, Fenghua Hu, Dou Liu, Michael Tetzlaff, Stephen J. Elledge

Research output: Contribution to journalArticlepeer-review

467 Scopus citations

Abstract

In response to DNA damage, cells activate checkpoint pathways that prevent cell cycle progression. In fission yeast and mammals, mitotic arrest in response to DNA damage requires inhibitory Cdk phosphorylation regulated by Chk1. This study indicates that Chk1 is required for function of the DNA damage checkpoint in Saccharomyces cerevisiae but acts through a distinct mechanism maintaining the abundance of Pds1, an anaphase inhibitor. Unlike other checkpoint mutants, chk1 mutants were only mildly sensitive to DNA damage, indicating that checkpoint functions besides cell cycle arrest influence damage sensitivity. Another kinase, Rad53, was required to both maintain active cyclin-dependent kinase 1, Cdk1(Cdc28), and prevent anaphase entry after checkpoint activation. Evidence suggests that Rad53 exerts its role in checkpoint control through regulation of the Polo kinase Cdc5. These results support a model in which Chk1 and Rad53 function in parallel through Pds1 and Cdc5, respectively, to prevent anaphase entry and mitotic exit after DNA damage. This model provides a possible explanation for the role of Cdc5 in DNA damage checkpoint adaptation.

Original languageEnglish
Pages (from-to)1166-1171
Number of pages6
JournalScience
Volume286
Issue number5442
DOIs
StatePublished - Nov 5 1999

Keywords

  • Anaphase
  • Anaphase-Promoting Complex-Cyclosome
  • CDC2 Protein Kinase/metabolism
  • Cell Cycle Proteins/genetics
  • Checkpoint Kinase 1
  • Checkpoint Kinase 2
  • Cyclin B/genetics
  • DNA Damage
  • DNA, Fungal/metabolism
  • Fungal Proteins/genetics
  • Intracellular Signaling Peptides and Proteins
  • Ligases/metabolism
  • Mitosis
  • Mutation
  • Nuclear Proteins/metabolism
  • Phosphorylation
  • Protein Kinases/genetics
  • Protein Serine-Threonine Kinases
  • RNA-Binding Proteins
  • Recombinant Fusion Proteins/metabolism
  • S Phase
  • Saccharomyces cerevisiae Proteins
  • Saccharomyces cerevisiae/cytology
  • Securin
  • Ubiquitin-Protein Ligase Complexes
  • Ubiquitin-Protein Ligases

Fingerprint

Dive into the research topics of 'Control of the DNA damage checkpoint by Chk1 and Rad53 protein kinases through distinct mechanisms'. Together they form a unique fingerprint.

Cite this