Bacterial polymerase and yeast polymerase II use similar mechanisms for transcription through nucleosomes

Wendy Walter, Maria L. Kireeva, Vasily M. Studitsky, Mikhail Kashlev

Research output: Contribution to journalArticlepeer-review

49 Scopus citations

Abstract

We have previously shown that nucleosomes act as a strong barrier to yeast RNA polymerase II (Pol II) in vitro and that transcription through the nucleosome results in the loss of an H2A/H2B dimer. Here, we demonstrate that Escherichia coli RNA polymerase (RNAP), which never encounters chromatin in vivo, behaves similarly to Pol II in all aspects of transcription through the nucleosome in vitro. The nucleosome-specific pausing pattern of RNAP is comparable with that of Pol II. At physiological ionic strength or lower, the nucleosome blocks RNAP progression along the template, but this barrier can be relieved at higher ionic strength. Transcription through the nucleosome by RNAP results in the loss of an H2A/H2B dimer, and the histones that remain in the hexasome retain their original positions on the DNA. The results were similar for elongation complexes that were assembled from components (oligonucleotides and RNAP) and elongation complexes obtained by initiation from the promoter. The data suggest that eukaryotic Pol II and E. coli RNAP utilize very similar mechanisms for transcription through the nucleosome. Thus, bacterial RNAP can be used as a suitable model system to study general aspects of chromatin transcription by Pol II. Furthermore, the data argue that the general elongation properties of polymerases may determine the mechanism used for transcription through the nucleosome.

Original languageEnglish
Pages (from-to)36148-36156
Number of pages9
JournalJournal of Biological Chemistry
Volume278
Issue number38
DOIs
StatePublished - Sep 19 2003

Keywords

  • Bacterial Proteins/metabolism
  • Chromatin/metabolism
  • DNA-Directed RNA Polymerases/chemistry
  • Escherichia coli/enzymology
  • Histones/chemistry
  • Ions
  • Models, Genetic
  • Nucleosomes/enzymology
  • RNA Polymerase II/chemistry
  • Transcription, Genetic

Fingerprint

Dive into the research topics of 'Bacterial polymerase and yeast polymerase II use similar mechanisms for transcription through nucleosomes'. Together they form a unique fingerprint.

Cite this