TY - JOUR
T1 - Asbestos, chromosomal deletions, and tumor suppressor gene alterations in human malignant mesothelioma
AU - Murthy, Siva S.
AU - Testa, Joseph R.
PY - 1999
Y1 - 1999
N2 - Exposure to the carcinogen asbestos is considered to be a major factor contributing to the development of most malignant mesotheliomas (MMs). We highlight the role of asbestos in MM and summarize cytogenetic and molecular genetic findings in this malignancy. The accumulation of numerous clonal chromosomal deletions in most MMs suggests a multistep process of tumorigenesis, characterized by the loss and/or inactivation of multiple tumor suppressor genes (TSGs). Cytogenetic and loss of heterozygosity (LOH) analyses of MMs have demonstrated frequent deletions of specific sites within chromosome arms 1p, 3p, 6q, 9p, 13q, 15q, and 22q. Furthermore, TSGs within two of these regions, i.e., p16/CDKN2A-p14(ARF) at 9p21 and NF2 at 22q12, are frequently altered in MMs. Homozygous deletion appears to be the major mechanism affecting p16/CDKN2A-p14(ARF), whereas inactivating mutations coupled with allelic loss occur at the NF2 locus. Finally, recent studies have demonstrated the presence and expression of simian virus 40 (SV40) in many MMs. SV40 large T antigen has been shown to inactivate the TSG products Rb and p53, suggesting the possibility that asbestos and SV40 could act as cocarcinogens in MM. The frequent occurrence of homozygous deletions of p16/CDKN2A-p14(ARF) and the ability of SV40 Tag to bind TSG products suggest that perturbations of both Rb- and p53-dependent growth-regulatory pathways are critically involved in the pathogenesis of MM.
AB - Exposure to the carcinogen asbestos is considered to be a major factor contributing to the development of most malignant mesotheliomas (MMs). We highlight the role of asbestos in MM and summarize cytogenetic and molecular genetic findings in this malignancy. The accumulation of numerous clonal chromosomal deletions in most MMs suggests a multistep process of tumorigenesis, characterized by the loss and/or inactivation of multiple tumor suppressor genes (TSGs). Cytogenetic and loss of heterozygosity (LOH) analyses of MMs have demonstrated frequent deletions of specific sites within chromosome arms 1p, 3p, 6q, 9p, 13q, 15q, and 22q. Furthermore, TSGs within two of these regions, i.e., p16/CDKN2A-p14(ARF) at 9p21 and NF2 at 22q12, are frequently altered in MMs. Homozygous deletion appears to be the major mechanism affecting p16/CDKN2A-p14(ARF), whereas inactivating mutations coupled with allelic loss occur at the NF2 locus. Finally, recent studies have demonstrated the presence and expression of simian virus 40 (SV40) in many MMs. SV40 large T antigen has been shown to inactivate the TSG products Rb and p53, suggesting the possibility that asbestos and SV40 could act as cocarcinogens in MM. The frequent occurrence of homozygous deletions of p16/CDKN2A-p14(ARF) and the ability of SV40 Tag to bind TSG products suggest that perturbations of both Rb- and p53-dependent growth-regulatory pathways are critically involved in the pathogenesis of MM.
KW - Asbestos/adverse effects
KW - Carcinogens/adverse effects
KW - Chromosome Aberrations/chemically induced
KW - Chromosome Disorders
KW - Cyclin-Dependent Kinase Inhibitor p16/genetics
KW - Gene Deletion
KW - Genes, Tumor Suppressor/drug effects
KW - Humans
KW - Mesothelioma/chemically induced
KW - Pleural Neoplasms/chemically induced
UR - http://www.scopus.com/inward/record.url?scp=0033032327&partnerID=8YFLogxK
UR - https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=purepublist2023&SrcAuth=WosAPI&KeyUT=WOS:000081132600002&DestLinkType=FullRecord&DestApp=WOS
U2 - 10.1002/(SICI)1097-4652(199908)180:2<150::AID-JCP2>3.0.CO;2-H
DO - 10.1002/(SICI)1097-4652(199908)180:2<150::AID-JCP2>3.0.CO;2-H
M3 - Review article
C2 - 10395284
SN - 0021-9541
VL - 180
SP - 150
EP - 157
JO - Journal of Cellular Physiology
JF - Journal of Cellular Physiology
IS - 2
ER -