TY - JOUR
T1 - Anaplastic Lymphoma Kinase Is Required for Neurogenesis in the Developing Central Nervous System of Zebrafish
AU - Yao, Sheng
AU - Cheng, Mangeng
AU - Zhang, Qian
AU - Wasik, Mariusz
AU - Kelsh, Robert
AU - Winkler, Christoph
PY - 2013/5/10
Y1 - 2013/5/10
N2 - Anaplastic Lymphoma Kinase (ALK) was initially discovered as an oncogene in human lymphoma and other cancers, including neuroblastoma. However, little is known about the physiological function of ALK. We identified the alk ortholog in zebrafish (Danio rerio) and found that it is highly expressed in the developing central nervous system (CNS). Heat-shock inducible transgenic zebrafish lines were generated to over-express alk during early neurogenesis. Its ectopic expression resulted in activation of the MEK/ERK pathway, increased cell proliferation, and aberrant neurogenesis leading to mis-positioning of differentiated neurons. Thus, overexpressed alk is capable of promoting cell proliferation in the nervous system, similar to the situation in ALK-related cancers. Next, we used Morpholino mediated gene knock-down and a pharmacological inhibitor to interfere with expression and function of endogenous Alk. Alk inhibition did not affect neuron progenitor formation but severely compromised neuronal differentiation and neuron survival in the CNS. These data indicate that tightly controlled alk expression is critical for the balance between neural progenitor proliferation, differentiation and survival during embryonic neurogenesis.
AB - Anaplastic Lymphoma Kinase (ALK) was initially discovered as an oncogene in human lymphoma and other cancers, including neuroblastoma. However, little is known about the physiological function of ALK. We identified the alk ortholog in zebrafish (Danio rerio) and found that it is highly expressed in the developing central nervous system (CNS). Heat-shock inducible transgenic zebrafish lines were generated to over-express alk during early neurogenesis. Its ectopic expression resulted in activation of the MEK/ERK pathway, increased cell proliferation, and aberrant neurogenesis leading to mis-positioning of differentiated neurons. Thus, overexpressed alk is capable of promoting cell proliferation in the nervous system, similar to the situation in ALK-related cancers. Next, we used Morpholino mediated gene knock-down and a pharmacological inhibitor to interfere with expression and function of endogenous Alk. Alk inhibition did not affect neuron progenitor formation but severely compromised neuronal differentiation and neuron survival in the CNS. These data indicate that tightly controlled alk expression is critical for the balance between neural progenitor proliferation, differentiation and survival during embryonic neurogenesis.
UR - http://www.scopus.com/inward/record.url?scp=84877302754&partnerID=8YFLogxK
UR - https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=purepublist2023&SrcAuth=WosAPI&KeyUT=WOS:000319055600073&DestLinkType=FullRecord&DestApp=WOS
U2 - 10.1371/journal.pone.0063757
DO - 10.1371/journal.pone.0063757
M3 - Article
C2 - 23667670
SN - 1932-6203
VL - 8
JO - PLoS ONE
JF - PLoS ONE
IS - 5
M1 - e63757
ER -