A novel real-time system to monitor cell aggregation and trajectories in rotating wall vessel bioreactors

Prakash Manley, Peter I. Lelkes

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

Rotating wall vessel bioreactors (RWVs) constitute dynamic suspension culture venues for tissue engineering. Quantitative real-time assessment of the kinetics of cell-cell aggregation in RWVs can yield mechanistic information about the initial steps leading to the assembly of individual cells into tissue-like constructs. In our imaging system, fluorescently labeled cells suspended in a HARV-type RWV were irradiated by a laser-beam. Emission was recorded by a camera mounted at 90° to the excitation plane. Using macro lenses, the system identified ∼5 μm particles from a 5 cm working distance, distinguished aggregated 20 μm microspheres from larger (45 and 90 μm) microspheres, and plotted local trajectories of microspheres and cells. Sizes of PC12 cells assessed by our system matched conventional measurements. We validated the system's ability to follow HepG2 and PC12 aggregation in real time over 24 h of RWV culture. Taken together, our system provides the means to measure and analyze in real time the processes that lead to the 3D tissue-like assembly of diverse cell types into spheroids. Future studies include development of intelligent feedback algorithms, allowing automatic control over RWV rotational speed required to maintain aggregating cells and nascent tissue in continual free fall.

Original languageEnglish
Pages (from-to)416-424
Number of pages9
JournalJournal of Biotechnology
Volume125
Issue number3
DOIs
StatePublished - Sep 18 2006

Keywords

  • CCD
  • HepG2 cells
  • Micro-gravity
  • PC12 cells
  • RWV bioreactor
  • Real-time monitoring
  • aggregation

Fingerprint

Dive into the research topics of 'A novel real-time system to monitor cell aggregation and trajectories in rotating wall vessel bioreactors'. Together they form a unique fingerprint.

Cite this