TY - JOUR
T1 - A comparison of statistical methods for the detection of hepatocellular carcinoma based on serum biomarkers and clinical variables
AU - Wang, Mengjun
AU - Mehta, Anand
AU - Block, Timothy M.
AU - Marrero, Jorge
AU - Di Bisceglie, Adrian M.
AU - Devarajan, Karthik
PY - 2013
Y1 - 2013
N2 - Background: Currently, a surgical approach is the best curative treatment for those with hepatocellular carcinoma (HCC). However, this requires HCC detection and removal of the lesion at an early stage. Unfortunately, most cases of HCC are detected at an advanced stage because of the lack of accurate biomarkers that can be used in the surveillance of those at risk. It is believed that biomarkers that could detect HCC early will play an important role in the successful treatment of HCC. Methods. In this study, we analyzed serum levels of alpha fetoprotein, Golgi protein, fucosylated alpha-1-anti-trypsin, and fucosylated kininogen from 113 patients with cirrhosis and 164 serum samples from patients with cirrhosis plus HCC. We utilized two different methods, namely, stepwise penalized logistic regression (stepPLR) and model-based classification and regression trees (mob), along with the inclusion of clinical and demographic factors such as age and gender, to determine if these improved algorithms could be used to increase the detection of cancer. Results and discussion. The performance of multiple biomarkers was found to be better than that of individual biomarkers. Using several statistical methods, we were able to detect HCC in the background of cirrhosis with an area under the receiver operating characteristic curve of at least 0.95. stepPLR and mob demonstrated better predictive performance relative to logistic regression (LR), penalized LR and classification and regression trees (CART) used in our prior study based on three-fold cross-validation and leave one out cross-validation. In addition, mob provided unparalleled intuitive interpretation of results and potential cut-points for biomarker levels. The inclusion of age and gender improved the overall performance of both methods among all models considered, while the stratified male-only subset provided the best overall performance among all methods and models considered. Conclusions: In addition to multiple biomarkers, the incorporation of age and gender into statistical models significantly improved their predictive performance in the detection of HCC.
AB - Background: Currently, a surgical approach is the best curative treatment for those with hepatocellular carcinoma (HCC). However, this requires HCC detection and removal of the lesion at an early stage. Unfortunately, most cases of HCC are detected at an advanced stage because of the lack of accurate biomarkers that can be used in the surveillance of those at risk. It is believed that biomarkers that could detect HCC early will play an important role in the successful treatment of HCC. Methods. In this study, we analyzed serum levels of alpha fetoprotein, Golgi protein, fucosylated alpha-1-anti-trypsin, and fucosylated kininogen from 113 patients with cirrhosis and 164 serum samples from patients with cirrhosis plus HCC. We utilized two different methods, namely, stepwise penalized logistic regression (stepPLR) and model-based classification and regression trees (mob), along with the inclusion of clinical and demographic factors such as age and gender, to determine if these improved algorithms could be used to increase the detection of cancer. Results and discussion. The performance of multiple biomarkers was found to be better than that of individual biomarkers. Using several statistical methods, we were able to detect HCC in the background of cirrhosis with an area under the receiver operating characteristic curve of at least 0.95. stepPLR and mob demonstrated better predictive performance relative to logistic regression (LR), penalized LR and classification and regression trees (CART) used in our prior study based on three-fold cross-validation and leave one out cross-validation. In addition, mob provided unparalleled intuitive interpretation of results and potential cut-points for biomarker levels. The inclusion of age and gender improved the overall performance of both methods among all models considered, while the stratified male-only subset provided the best overall performance among all methods and models considered. Conclusions: In addition to multiple biomarkers, the incorporation of age and gender into statistical models significantly improved their predictive performance in the detection of HCC.
KW - Age Factors
KW - Algorithms
KW - Biomarkers, Tumor/blood
KW - Carcinoma, Hepatocellular/blood
KW - Diagnosis, Differential
KW - Female
KW - Fucose/metabolism
KW - Humans
KW - Kininogens/blood
KW - Liver Cirrhosis/blood
KW - Liver Neoplasms/blood
KW - Logistic Models
KW - Male
KW - Middle Aged
KW - Multivariate Analysis
KW - ROC Curve
KW - Sex Factors
KW - alpha 1-Antitrypsin/blood
KW - alpha-Fetoproteins/analysis
UR - http://www.scopus.com/inward/record.url?scp=84887975088&partnerID=8YFLogxK
UR - https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=purepublist2023&SrcAuth=WosAPI&KeyUT=WOS:000329441800009&DestLinkType=FullRecord&DestApp=WOS
U2 - 10.1186/1755-8794-6-S3-S9
DO - 10.1186/1755-8794-6-S3-S9
M3 - Article
C2 - 24564861
SN - 1755-8794
SN - 1471-2350
VL - 6 Suppl 3
SP - S9
JO - BMC Medical Genomics
JF - BMC Medical Genomics
IS - SUPPL. 3
M1 - S9
ER -