Calculated based on number of publications stored in Pure and citations from Scopus
Calculated based on number of publications stored in Pure and citations from Scopus
Calculated based on number of publications stored in Pure and citations from Scopus
1983 …2024

Research activity per year

Personal profile

Professional Information

Lab Overview

We are interested in the biology of human pathogenic viruses with an emphasis on mechanisms of viral replication and host-virus interactions that play a role in innate immunity. Our investigations on hepatitis B virus (HBV) lead to the identification of the signals required for reverse transcription of the viral DNA and provided the basis for the current model for hepadnavirus replication. We discovered that the hepatitis B polymerase could be expressed in enzymatically active form in the presence of the heat shock protein 90 complex. Moreover, we demonstrated that recovery from chronic hepatitis B infections requires massive destruction of infected hepatocytes.

Lab Description

In line with our interest in HBV biology, the goal of our current research effort is to investigate one of the least understood steps in HBV replication: the mechanism by which the viral genome is converted into a covalently closed circular (ccc) DNA form and how intracellular amplification of cccDNA is regulated. To conduct our studies, we have developed a CRISPR/Cas9 platform permitting HBV infection of cells with specific gene knockouts. In addition, we are exploring a novel strategy to eliminate cccDNA from infected cells with the help of the CRISPR/Cas9 system. Finally, we are developing methods to visualize individual copies of cccDNA in HBV infected cells. We seek to determine the localization of cccDNA in nuclei of infected cells and to monitor the fate of cccDNA under conditions mimicking natural recovery from acute HBV infections. Our long-term goal is to provide novel insights into the biology of cccDNA that can be used for the development of therapies to cure chronic hepatitis B.

Research interests

  • Hepatitis B virus biology.
  • DNA repair mechanisms involved in hepatitis B virus replication.
  • Host factors required for the HBV life cycle.
  • Mechanisms for HBV persistence.

URL

Fingerprint

Dive into the research topics where Christoph Seeger is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
  • 1 Similar Profiles

Collaborations and top research areas from the last five years

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or